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Abstract—Some implications of a scale invariant model of 

statistical mechanics to Boltzmann entropy in thermodynamics versus 
Shannon entropy in information theory are investigated. The 
objective versus subjective nature of entropy as well as the 
fundamental significance of the choice of Shannon measure K as 
Boltzmann constant k is described. In addition, the impact of the 
results on Nernst-Planck statement of the third law of 
thermodynamics is discussed. 
 

I. INTRODUCTION 
TOCHASTIC quantum fields [1-17] and classical 
hydrodynamic fields [18-29] viewed as ensembles of 

weakly coupled oscillators resulted in the introduction of a 
scale-invariant model of statistical mechanics [30] and its 
application to the fields of thermodynamics [31], fluid 
mechanics [32-33], statistical mechanics [34], and quantum 
mechanics [35].   
 In the present study, some implications of the model to 
the physical foundation of classical and statistical 
thermodynamics and Boltzmann thermodynamic entropy 
versus Shannon information entropy are examined. Because 
languages involve distinguishable atoms i.e. alphabets, a 
model of language as multicomponent thermodynamic mixture 
is examined thus revealing the connections between Shannon 
information entropy on the one hand and entropy of ideal gas 
mixtures on the other hand. Finally, some of the implications 
of the results to Nernst-Planck statement of the third law of 
thermodynamics are discussed. 

II. A SCALE-INVARIANT MODEL OF STATISTICAL MECHANICS 
 The scale-invariant model of statistical mechanics for 

equilibrium galactic-, planetary-, hydro-system-, fluid-element-
, eddy-, cluster-, molecular-, atomic-, subatomic-, kromo-, and 
tachyon-dynamics corresponding to the scale β = g, p, h, f, e, 
c, m, a, s, k, and t is schematically shown in Fig.1 [31].  Each 
statistical field is identified as the "system" and is composed of 
an ensemble of "elements" described by a distribution function 
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fβ(uβ) = fβ(rβ, uβ, tβ) drβduβ. Each element is composed of 
an ensemble of small particles called the "atoms" of the field  
and are viewed as point-mass. The most probable element 
(system) velocity of the smaller scale (j) becomes the velocity 
of the atom (element) of the larger scale (j+1).  
 Following the classical methods [36-41] the invariant 
definition of density ρβ, and velocity of atom uβ, element vβ, 
and system wβ at the scale β are [35, 42]  
 

ρ n m m f duβ β β β β β= = ∫  , uβ = vmpβ−1 (1) 

  
1m f d−

β β β β β β= ρ ∫v u u  , wβ = vmpβ+1 (2) 

 

Similarly, the invariant definition of the peculiar and diffusion 
velocities are introduced as  
 

β β β
′ =V u - v  , β β β=V v - w  (3) 

 

such that   
 

1β β+
′=V V  (4) 
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Fig. 1 A scale invariant view of statistical mechanics from cosmic to 
tachyon scales.  
 
 When the model is applied to social structures one 
arrives at the cascade shown in Fig. 2. Interestingly, as signs 
for capacity of number of people in elevators in Athens show, 

Boltzmann Entropy of Thermodynamics versus 
Shannon Entropy of Information Theory  

Siavash H. Sohrab 

S 

INTERNATIONAL JOURNAL OF MECHANICS Volume 8, 2014

ISSN: 1998-4448 73



 

 

in Greek a person is referred to as “atom” that is the smallest 
unit of social structure shown in Fig. 2. The correspondence 
between statistical fields in Figs. 1-2 clearly show the physical 
and objective basis of information and its communication 
between “atoms” or individuals be it in the form of particle 
exchange or exchange of more complex symbols such as 
words or numbers. In this sense, the information theory like all 
other branches of science must of course be a subset of the 
theory of everything TOE (Fig. 1). 
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Fig. 2 Hierarchy of social structures from cosmic to individual or 
atomic scales.  
 
 In examining the small-scale limit of the hierarchy in 
Fig.2, one notes that a living person is composed of a 
collection of living organs. Similarly, a living organ is 
composed of a collection of living cells. Therefore it is 
interesting to speculate if parallel to Leibnitz monad there 
exist such a thing as the smallest unit or “atom” of life out of 
which all living organisms are constructed.  In other words, if 
all living systems are composed of living elements, is there a 
limit to such an infinite regression.   

III. STOCHASTIC NATURES OF PLANCK AND BOLTZMANN 
CONSTANTS AND DE PRETTO NUMBER 8338 

Because at thermodynamic equilibrium the mean velocity of 
each particle, Heisenberg-Kramers virtual oscillator [43], 
vanishes <uβ> = 0 the translational kinetic energy of particle 
oscillating in two directions (x+, x−) is expressed as  
 

2 2
x xm u / 2 m u / 2β β β + β β −ε = 〈 〉 + 〈 〉  

          2 2 1/2 2 1/2
xm u pβ β + β β β= 〈 〉 = 〈λ 〉 〈ν 〉   (5) 

 
where 2 1/2

xp m uβ β β += 〈 〉 is the root-mean-square momentum 

of particle and <u2
βx+> = <u2

βx−> by Boltzmann equipartition 
principle. At any scale β, the result in (5) can be expressed in 
terms of either frequency or wavelength  
 

2 2 1/2 2 1/2m u p hβ β β β β β β βε = 〈 〉 = 〈λ 〉 〈ν 〉 = ν         (6a) 
 

2 2 1/2 2 1/2m u p kβ β β β β β β βε = 〈 〉 = 〈ν 〉 〈λ 〉 = λ         (6b) 
 
when the definition of stochastic Planck and Boltzmann 
factors are introduced as [33] 
 

2 1/2h pβ β β= 〈λ 〉               (7a) 
 

2 1/2k pβ β β= 〈ν 〉            (7b) 
 
 At the important scale of EKD (Fig. 1) corresponding to 
Casimir [44] vacuum composed of photon gas, the universal 
constants of Planck [45, 46] and Boltzmann [31] are identified 
from equations (6)-(7) as  
 

2 1/ 2 34
k k kh h m c 6.626 10−= = 〈λ 〉 = ×  J-s  (8a) 

 
2 1/ 2 23

k k kk k m c 1.381 10−= = 〈ν 〉 = ×  J/K  (8b) 
 
Next, following de Broglie hypothesis for the wavelength of 
matter waves [2]   
 

h / pβ βλ =   (9a) 
 
the frequency of matter waves is defined as [31] 
 

k / pβ βν =              (9b) 
 
When matter and radiation are in the state of thermodynamic 
equilibrium equations (9a) and (9b) can be expressed as 
 

kh h hβ = =  ,    kk k kβ = =       (10) 
 
 The definitions in equations (8a) and (8b) result in the 
gravitational mass of photon [31] 
 

3 1/ 2 41
km (hk / c ) 1.84278 10−= = ×  kg     (12) 

 
that is much larger than the reported [47] value of 514 10−×  
kg. The finite gravitational mass of photons was anticipated by 
Newton [48] and is in accordance with Einstein-de Broglie 
theory of light [49-53]. Avogardo-Loschmidt number was 
predicted as [31]  
 

o 2 23
kN 1/(m c ) 6.0376 10= = ×                    (13) 

 
leading to the modified value of the universal gas constant  
 

o oR N k 8.338= =   kJ/(kmol-K)      (14) 
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Also, by (13) the atomic mass unit becomes 
 

2
kamu m c=  

  1/2 27(hkc) 1.6563 10−= = ×  kg/kmol     (15) 
 
Since all baryonic matter is known to be composed of atoms, 
equations (12) and (15) suggest that all matter in the universe 
is composed of light [54]. From (8a)-(8b) the wavelength and 
frequency of photon in vacuum 2 1/2 2 1/2

k k c〈λ 〉 〈ν 〉 =  are  
 

2 1/2 o
k k 1/ R 0.119935λ = 〈λ 〉 = =  m    ,     

     2 1/2 9
k k 2.49969 10ν = 〈ν 〉 = ×   Hz         (16) 

 
 In a recent study [35] a modified definition of 
thermodynamic temperature T 2T′ =  was introduced that 
resulted in the modified value of Joule-Mayer mechanical 
equivalent of heat J [35] 
 

cJ 2J 2 4.169 8338= = × =    Joule/kcal         (17) 
 
where the classical value cJ 4.169 4.17=  [kJ/kcal] is the 
average of two values Jc = (4.15, 4.19) reported by Pauli [55].  
The number in (17) is thus identified as the universal gas 
constant in (14) when expressed in appropriate MKS system 
of units  
 

o oR kN J 8338= = =       Joule/(kmol-K)       (18) 
 
The modified value of the universal gas constant in (14) was 
recently identified [56] as De Pretto number 8338 that 
appeared in the mass–energy equivalence equation of De 
Pretto [57] 
 

2 2Joule E mc      = mc / 8338   kcal=             (19) 
 
 Unfortunately, the name of Olinto De Pretto in the 
history of evolution of mass energy equivalence is little 
known. Ironically, Einstein’s best friend Michele Besso was a 
relative and close friend of Olinto De Pretto’s brother Augusto 
De Pretto.  The relativistic form of (19) was first introduced in 
1900 by Poincaré [58] 
 

2
rE m c    =              (20) 

where 2 2

r om m / 1 v / c= − .  Since the expression (19) is the 
only equation in the paper by De Pretto [57], the exact method 
by which he arrived at the number 8338 is not known even 
though one possible method was recently suggested [56]. The 
important contributions by Hasenöhrl [59] and Einstein [60] 
as well as the equivalence principle, equivalence of the rest or 
gravitational mass and the inertial mass were discussed in a 
recent study [54]. 

 According to (15) the atomic mass jm̂  of any chemical 
element j is the product of an integral number representing its 
molecular weight jn  and the universal constant called atomic 
mass unit defined in (15) such that 

2
j j j k jˆ n (amu) n m c n hkcm ≈ = =    in harmony with the 

perceptions of Sommerfeld [61] 
 
"Our spectral series, dominated as they are by integral quantum 
numbers, correspond, in a sense, to the ancient triad of the lyre, 
from which the Pythagoreans 2500 years ago inferred the 
harmony of the natural phenomena; and our quanta remind us of 
the role which the Pythagorean doctrine seems to have ascribed to 
the integers, not merely as attributes, but as the real essence of 
physical phenomena." 
 
as well as the ideas of Weyl [62]. 

IV. OBJECTIVE VERSUS SUBJECTIVE NATURE OF 
THERMODYNAMIC ENTROPY 

 Possible subjective versus objective nature of entropy 
has been subject of much debate ever since 1948 when 
Shannon [63-64] used the name entropy in his information 
theory. The objective nature of thermodynamic entropy is 
evident form its classical definition first introduced by 
Clausius 
 

revd d / TS Q=                (21) 
 
In other words, direct connection between entropy S and heat 
Q clearly establishes the objective nature of the former.   
 The misunderstandings concerning possible subjective 
nature of entropy could be due to its statistical definition first 
introduced by Boltzmann 
 

k ln WS =   ,  j jk ln WS =        (22) 
 
The number of complexions jW  for distributing Nj 
indistinguishable particles among gj distinguishable particle 
cluster j [42] or energy level j introduced by Boltzmann [65-
67] and Planck [45]  is 
 

 

j j
j

j j

(N g 1)!
W

N ! (g 1)!
+ −

=
−

          (23) 

 
The total number of complexions for statistically independent 
energy levels is 
 

j
j

W W= ∏                      (24) 

 
 According to the scale invariant model of statistical 
mechanics the degeneracy gj denotes number of 
distinguishable clusters (elements) in a particular energy level 
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j of the system [35]. However, the smallest cluster contains 
only a single particle and is therefore considered to be full 
since no other particle can be added to this smallest cluster.  
Because an empty cluster has no physical significance, the 
total number of available clusters of energy level j will 
be j(g 1)− . Therefore, Planck-Boltzmann formula (23) is the 

exact number of complexions for distributing jN  

indistinguishable oscillators amongst j(g 1)−  distinguishable 
available clusters. Hence, the scale invariant model of 
statistical mechanics (Fig. 1) provides new perspectives on the 
probabilistic nature of (23) and the problem of 
distinguishability discussed by Darrigol [68].   
 If following the ideas of Onnes and Ehrenfest the 
quantity j j(N g 1)+ −  is viewed as the total number of 

symbols  composed of jN  indistinguishable particles and 

j(g 1)− available distinguishable clusters one may consider 
the inverse of (23) as probability of complexion j 
 

 j j
j

j j j

N ! (g 1)! 1
(N g 1)! W

P
−

= =
+ −

        (25) 

 
such that (22) and (24) result in 
 

j jk lnS P= −    ,   k lnS P= −      (26) 
 
when the probability of  all complexions are assumed to be 
independent of one another. 
 Under the realistic assumptions  
 

j jg N   ,  jN 1        (27) 
 
it is known that the number of complexions for Bose-Einstein 
statistics in (23) simplifies such that all three types namely 
Corrected Maxwell-Boltzmann, Bose-Einstein, and Fermi-
Dirac statistics will have [69] 
 

jN
j j jW N / N !=    ,      NW N / N!=     (28) 

 
Following the classical methods [69] the maximization of W 
in (23) will result in the Boltzmann distribution [42] 
 

j j j jˆ ˆ( ) ( )/kT
j j jN g e g eµ µ−β ε −α − ε −α= =          (29) 

 
The constant coefficient α multiplying Gibbs chemical 
potential jµ̂   was shown to be unity α = 1 [42]. 
 The exact nature of Boltzmann thermodynamic entropy 
is best revealed by looking at the simple case of monatomic 
ideal gas on which the present study is focused. Since it is 
known that physical particles are not mathematical points and 
hence possess a finite spatial extent, the energy due to rotation 

of particles cannot be properly neglected as emphasized by 
Clausius [70]. Also, because particles are not absolutely 
incompressible such as back holes, the energy due to vibration 
(pulsation) of particles should also be accounted for as pointed 
out by Clausius [70] 
 

"In liquids, therefore, an oscillatory, a rotatory, and a 
translator motion of the molecules take place, but in such 
a manner that these molecules are not themselves 
separated from each other, but even in the absence of 
external forces, remain within a certain volume" 

 
 In recent studies [42, 71] it was shown that when one 
identifies four degrees of freedom respectively associated with 
particle translational, rotational, vibrational, and potential 
energies and applies Boltzmann equipartition principle (28) 
leads to  
 

j jN 4N4
j4 jt jr jv jp j jW W W W W (N / N !) e= = ≈   (30) 

 
Substitution for total number of complexions from (30) into 
the Boltzmann formula (22) gives  
 

j j4N kS =       ,        4NkS =        (31) 
 
in exact agreement with the result obtained for photon gas in 
Planck equilibrium radiation [42].   
 According to (31) entropy is directly related to the 
number of Heisenberg-Kramers virtual oscillators [43] and its 
dimension [J/(kg.K] arises solely from that of Boltzmann 
constant k defined in (10). For example, when 1 kg water is 
evaporated at constant atmospheric pressure and constant 
temperature T = 373 K from liquid to vapor phase, since the 
mean energy per oscillator j kTε =  is constant  the increase 
in thermal energy equal to the latent heat of vaporization  

v g fL 2260 kj/kgh h= − ≈  occurs through increase of the 
number of oscillators hence entropy by (31). In other words 
the same mass of water at constant temperature of T = 373 K 
contains much larger number of oscillators in gas phase than 
in liquid as is to be expected.  Identification of thermodynamic 
entropy as number of oscillators in (31) clearly establishes its 
objective nature. 
 Next, what is known as information entropy H according to 
Shannon [67-68] information theory and expressed by 
Shannon formula 
 

j j
j

H K lnp p= − ∑           (32) 

 
where K is a positive constant is examined. The above 
definition is based on conditional probability for occurrence of 
event j given a message A [69] 
 

j j
ˆ K ln[ ( j / A) / ]i p p=          (33) 
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Only with maximum value of the conditional probability  
 

j ( j / A) 1p =             (34) 
 
does equation (33) result in maximum information 
 

max j
ˆ K lni p= −                 (35) 
 
leading to the number-averaged or the mean value of 
information [69] 
 

max j j j
j j

I ˆ K ln
N

i p p p= = −∑ ∑          (36) 

 
Comparison of (36) and (32) shows that Shannon information 
entropy H should correspond to information conveyed per 
symbol.  
 It is possible to arrive at an expression for 
thermodynamic entropy similar to Shannon formula in (32) 
and (36) for information entropy.  To do this however, the 
total number of complexions W must be expressed in terms of 
distribution of particles amongst various quantum states [69, 
72] 
 

j
j

W N!/ N != ∏               (37) 

 
rather than amongst various energy levels as in (24).  
Substitutions for W from (37) and the atomic probability  
 

j jN / Np =             (38) 
 
into Boltzmann equation (22) lead to [69]  
 

j j
j

k ln W Nk lnS p p= = − ∑           (39) 

or entropy per particle 
 

j j
j

k ln
N
S p p= − ∑           (40) 

 
Besides the difference between the “measure” K versus 
Boltzmann universal constant k the thermodynamic entropy in 
(40) is identical to Shannon formula (32). One notes however 
that the thermodynamic entropy of Boltzmann (22) is based on 
W in (24) whereas entropy (40) is based on W in (37). The 
nature of equivalence of (32) and (40) will be further 
examined in the next Section.    

V. INFORMATION THEORY AND ITS CONNECTIONS 
TO THERMODYNAMICS OF IDEAL MIXTURES 

 The application of scale invariant model of statistical 
mechanics schematically shown in Fig. 1 to languages in 

general and information theory of Shannon in particular 
suggests the following hierarchy 
 

jAlphabet (atom)β= =A  

j 1Word (elemnt) (atom)β β+= = =W           

j 1 2Sentence (system) (element) (atom)β β+ β+= = = =S  

 
               (41) 
 j 1 2Paragraph (system (element)β+ β+= = ) =P  

 j 2 3Essay (sytem) (element)β+ β+= = =E  

 j 3Book (system)β+= =B  

. . . 
 

Each language is constructed from a set of distinguishable 
alphabets or atoms Aj such as the English alphabets  
 
A1 = A,  A2 = B,  A3 = C, ….. A26 = Z, A27 = Blank   
 
The above small number of distinguishable alphabets could be 
combined to form a very large number of distinguishable 
words Wj  such as 
 
W 1 = Democracy,    W 2 = Freedom,  …  
  
One can thus create an entire hierarchy of entities, such as 
sentences, essays, books, libraries, … in accordance with (41).   
 Because of their distinguishable atomic species 
languages could be best modeled as multi-component mixture 
in thermodynamics. Therefore, one begins to examine ideal 
mixtures by considering the entropy of an ideal monatomic gas 
in classical thermodynamics given by 
 
Td du pdvs = + ,           (42) 
 
or 
 

v
dT dvd c p
T T

s = +        .   (43) 

 
According to (31) entropy is related to the number of 
oscillators. The number of Heisenberg-Kramers [43] virtual 
oscillators depends on volume V and on thermodynamic 
temperature since T is identified as de Broglie wavelength by 
(6b)-(7b) and hence relates to the atomic volume 3v̂ = λ  
[71].  Therefore, for an ideal gas opv R T= the temperature 
derivative in (43) is expressed in terms of derivative of 
number of moles as 
 

o o
v

dT dv dN dvd c p 3R R
T T N v

S = + = − +    (44) 
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With the multiplicative factor of two in the modified definition 
of thermodynamic temperature T 2T′ =  due to harmonic 
motion in two coordinate directions (x+, x-) at thermodynamic  
equilibrium, the specific heat at constant volume becomes 

o
vc 3R= rather than o

vc 3R / 2= as discussed in [42, 71].  
By integration of (44) for species j from its pure state to its 
mixture state one arrives at 
 

j jo o3R ln R ln
N p

N p
ojS S− = − −  

     j jo oN N
3R ln R ln

N N
= − −  

      j jo oN N
4R ln 4N k ln

N N
= − = − .  (45) 

 
Equation (45) with the atomic probability defined as in (38) 
 

j
j

N

N
p̂ ≡               (46) 

and reference entropy 0joS =  of a pure state j 1p̂ =  gives 
 

o o
j jˆN 4N k ln ˆS = s p= −          (47) 

 
that results in the atomic entropy 
 

jˆ 4k ln ˆjs p= −             (48) 
 
The factor of 4 in (48) is associated with the four degrees of 
freedom discussed in the previous Section and will be further 
clarified in the following. 
 From (48) the entropy of all type j atomic species 
becomes 
 

j
j j

N
jˆ 4k ln k lnˆNjS s p P= = − = −       (49) 

 
where 
 

j

j

N
j j j

N

ˆ ˆP p p= =∏            (50) 

 
Next, entropy of the mixture is obtained by adding the entropy 
of all species from (49) to get 
 

jj j4k ln ˆNS S p= = −∑ ∑  

      j j4kN lnˆ ˆp p= − ∑    (51) 

 
Comparison of (51) with Shannon formula (32) shows three 
important differences. First is the constant measure K in (32) 
versus Boltzmann constant k in (51) to be further discussed in 

the sequel.  Next is the factor of 4 in (51) arising from the four 
degrees of freedom discussed above equation (30) and 
manifested in (45). Finally, the total number of atoms of all 
species  
 

jN N= ∑              (52) 
 
in (51) that does not appear in (32). Shannon entropy of 
information theory (32) and mixture entropy of 
thermodynamics (51) become mathematically equivalent if 
one chooses the Shannon “measure” as K = k and H in (32) is 
identified as atomic entropy of the mixture from (51) 
 
ˆ / (4N) k lnˆ ˆj js S p p= = − ∑        (53) 

 
 The results in (52) and (32) could be compared with the 
classical form of molar entropy of ideal mixture [72] 
 

mix j j jŝ k lnN N jS x= = −∑ ∑       (54) 
 
Hence 
 

j
mix

N
kN ln kN ln

N j j jS x x x= − = −∑ ∑    (55) 

  
involving species mole fraction 
  

j
j j j

j

N N
x

N N

v

v
ˆ= p= = =          (56) 

 
The result in (54) unlike (32) does not involve any averaging 
and represents direct sum of the entropy contributions of all 
species. The averaging process occurs through division by 
total number of atoms of all species N in (55). The difference 
by factor of 4 between (51) versus (55) is due to the inclusion 
of all four degrees of freedom in the former. 
 The classical definition of entropy by Boltzmann is 
based on the most probable number of complexions according 
to equations (22)-(24). However, because Boltzmann 
distribution function (29) itself is derived by maximization of 
W, it is possible to obtain a modified formula for 
determination of entropy directly from (29) that after 
simplification for ideal gas and approximate normalization is 
expressed as 
 

jˆ /kT
jN Ne−ε=             (57)

  
The simplification in (57) is due to the vanishing of chemical 
potential jˆ 0µ =  of ideal gas at equilibrium in accordance 
with the equilibrium conditions G = dG = 0 [42]. For a single 
atom with energy j

ˆ kT=ε  (57) results in atomic probability 
per degree of freedom 
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1
j jt jˆ ˆ N / N ep = p −≡ =          (58) 

 
Although approximate, the result in (58) when substituted in 
(48) gives atomic entropy per degree of freedom exactly equal 
to Boltzmann constant k as is to be expected.   
 When all four degrees of freedom associated with 
translational, rotational, vibrational, and potential energy are 
taken into account along with Boltzmann equipartition 
principle the total atomic probability becomes 
 

4 4
j4 jt jr jv jp jˆ ˆ ˆ ˆ ˆ (N / N) ep p p p p −= = ≈      (59) 

 
By (58) one can express (59) as 
 

j j
ˆˆ4 /kT /kT4

j4 jˆ (N / N) e e hp − ε −= = =       (60) 
 

where the atomic transition enthalpy jĥ  of specie j of ideal 
monatomic gas is given by [42, 71] 
 

j j j jt jr jv jp
ˆ ˆ ˆ ˆ ˆ ˆ ˆp v = 4kTh u u u u u= + + + + =    (61) 

 
 The results in (57), (58), (60), and (61) lead to the 
introduction of atomic thermodynamic entropy as 
 

j j4 jˆ ˆ ˆk ln 4k ln 4ks p p= − = − =       (62)
    
The summation of the atomic entropy (62) over all atoms of 
specie j results in  
 

j j jj
ˆ= N 4k ln 4kNˆ jS s Ps = = − =∑      (63) 

 
where the probability of element composed of Nj atoms is  
 

j j j

j

N N N
j j j j

N

ˆ ˆ(N / N)P p p e−= = = =∏     (64) 

 
Finally, summation of entropy (63) over all species results in 
the total mixture or system entropy 
 

j ˆ ˆ= N N 4k ln 4kNjS s s PS = = = − =∑ ∑    (65) 
 
when the total probability P is defined as 
 

 j j

j j

N N N N
j j j jˆ ˆ ˆ eP P p = p p −∑= = = =∏ ∏    (66) 

 
In summary, the results (62), (63), and (65) respectively 
correspond to Boltzmann expressions of entropy at “atomic”, 
“element”, and “system” scales j jˆ( , , )s S S  with the 

corresponding probabilities j4 j4 4ˆ( , , )p P P for four degrees of 
freedom 
 

jt j
ˆˆ4 /kT h /kT4 4

j4 jˆ ˆ e e ep p − ε − −= = = =           (67a) 

j j j j j
ˆ4N N h /kT /kT 4N

j4 jˆ e e eHP p − − −= = = =     (67b) 

j
/kT4 /kT 4N

4 j
j

e e e
H HP P

− − −∑= = = =∏     (67c) 

 
 Exact correspondence between Shannon and Boltzmann 
statistics respectively based on distribution among quantum 
states versus energy levels can be established by substituting 
from (58) in (67b) to obtain 
 

j jj
j

j j

N NN
N j

j N N
j j j

e N1 N(N / N )
N NP

= = =  

 

 
j j

j

N N
j j j j

jN
j j jj

N N (N g 1)!
W

N ! N !(g 1)!(N / e)
+ −

= ≈ ≈ =
−

 (68) 

 
in accordance with (25). Similarly, by (58) the system 
probability in (67c) becomes  
 

j
N N

N
j N N

j j

1 N Nˆ
N (N / e)

p
P

= = =∏  

 

    
NN (N g 1)! W

N! N!(g 1)!
+ −

= ≈ =
−

   (69) 

 
that is in consistent with (24) and (68). 
 According to (62) the atomic entropy of all monatomic 
species are the same being four times the universal Boltzmann 
constant 
 

jˆ ˆ 4ks s= =              (70) 
 
The result in (70) is due to the fact that when particles of 
monatomic ideal gas are in equilibrium with the radiation field 
of photon gas within which they reside particles must satisfy 
both de Broglie matter-wave relation in (9a) as well as matter-
wave frequency relation in (9b). Therefore (7b) (9b) (10), and 
(72) result in 
 

j j j jˆ ˆ4k 4 p 4ks s= = ν = =         (71) 
 
such that at thermodynamic equilibrium the Boltzmann factors 
(7b) of all particles satisfy (10) and hence are equal to the 
universal Boltzmann constant defined in (8b). A similar 
behavior occurs for atomic mass jm̂  of different elements 
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being an integral numbers jn  times a universal constant 
namely the atomic mass unit given in (15) such that  
 

2
j j j k jˆ n (amu) n m c n hkcm ≈ = =        (72) 

 
as discussed in Section III. 

VI. PHYSICAL NATURE OF BOTH THERMODYNAMICS 
AND INFORMATION ENTROPY 
 Since Boltzmann entropy represents a measure of 
randomness of particles in thermodynamic system a decrease 
of entropy from its maximum value could be viewed as 
information and by (26) expressed as   
 

jmax max j j j maxI S kN ln( / )S P P= − =       (73) 
 
Hence, in harmony with ideas of Brillouin [73], reduction of 
uncertainty from its maximum value to a lower value at state j 
could be interpreted as an increase in certainty thus 
constituting information as schematically shown in Fig. 3.  
 

                       

Smaxβ

Sjβ-1

Sjβ

Imaxβ

Imaxβ-1
0β = Smaxβ-1

0β-1 = Smaxβ-2  
 
Fig. 3 Scale-invariant definition of thermodynamic information 
defined as reduction of absolute uncertainty or entropy Imax = Smaxβ – 
Sjβ. 
 
The nature of approach to the state of zero entropy Sβ = 0 at 
scale β shown in Fig. 3 according to Nernst-Planck third law 
of thermodynamics will be discussed in the next Section.  The 
region of negative entropy Sβ < 0 at scale β (Sβ−1 > 0) in Fig. 3 
on the other hand, reminiscent of Brillouin [73] concept of 
negentropy, could be identified with negative number of 
particles and hence associated with Dirac anti-matter.  Thus, 
one could have a particle (N = 1), no particle or Casimir [44] 
vacuum (N = 0), or an anti-particle (N = −1). For example, in 
case of electron gas particle and anti-matter (hole) correspond 
to N = (−1, 1) and refer to electron and positron.  
 The occurrence of the universal constant of Boltzmann k 
in (40) has fundamental significance.  According to equations 
(7)-(8) Planck and Boltzmann constants are two fundamental 
constants of nature that relate to spatial and temporal aspect of 
Casimir [44] vacuum fluctuations. Because all conceivable 
information must be transmitted by some physical entity such 
as electron, photon, or neutrino, etc. through an equally 

physical background field of space-time, it is reasonable to 
expect that both constants (h, k) will play a central role is 
transmission of information.  Therefore, it is not advisable to 
modify Boltzmann thermodynamic entropy in (40) to achieve 
correspondence with Shannon information entropy in (32). 
Instead one can choose Shannon “measure” of information K 
to be identical to Boltzmann constant K = k and simply define 
both dimensionless thermodynamic and information entropy as   
 
  j j

j
H / K S / (Nk) lnp p= = −∑        (74) 

in exact correspondence with one another given the 
equivalence of their respective  probabilities in (38). 
 The central role of Boltzmann constant and its intimate 
relation to entropy is best revealed by examination of Planck 
energy spectrum for equilibrium radiation [35, 42]. Because of 
the closure of gap between ideal gas theory and radiation 
theory [42], the entropy of equilibrium photon gas is given by 
the same relation as ideal gas namely [42] 
 

j
j j j j j tj j j

û 4T = 4N kT = 4N 4N
3 3

S U= =ε     (75) 

 
In (75) the mean energy of each oscillator tj j

ˆ kT=ε  involves 
the product of two parts the first part k that relates to atomic 
entropy by (62) and the second part T that relates to de 
Broglie wavelength of particle by (6b) such that  
 

2 1/2 2 1/2p k kTβ β β β β β β= 〈ν 〉 〈λ 〉 = λ =ε        (76) 
 
By identifying k as atomic entropy per degree of freedom 
according to (62) the conjugate role played by (k, T) in 
thermodynamic will be also played by ˆ( T)s,  such that their 
product ˆTs  gives the total oscillator energy or atomic 

enthalpy ˆˆT 4kT =s = h  in accordance with (75). 
 Now that the nature of constant k in Boltzmann 
thermodynamic entropy has been identified, possible role of k 
in Shannon information entropy will be examined. First, it is 
noted that all communications and exchange of information 
must involve some kind of physical entity such as a particle 
like molecule, atom, electron, photon, neutrino, … involving 
molecular-dynamics, … electro-dynamics, chromo-dynamics, 
… statistical fields. Communication also involves ensembles 
of different symbols such as alphabets Aj, alphabet clusters or 
words Wj word clusters or sentences Sj  … as encountered in the 
information theory of Shannon [67, 68]. Hence, parallel to 
system of ideal gas, one seeks a spectrum of “alphabet cluster” 
or “word” sizes that will maximize the entropy i.e. total 
number of  symbols N of the system such that the number of 
distinguishable complexions W expressed by a corresponding 
Boltzmann-Planck equation (24) is maximized. In other 
words, under “equilibrium” distribution alphabet-cluster sizes 
will correspond to maximum W and hence entropy and 
therefore maximum N by (31) to be used to transmit maximum 
number of bits (1, 0) and hence information.   
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 It is now clear that in order to insure an exact 
correspondence between Boltzmann and Shannon entropy one 
must choose the “measure”  K = k and write Shannon formula 
(32) as 
 

j j
j

H k lnp p= − ∑           (77) 

 
Concerning the positive constant K in his formula (32) 
Shannon writes [63- 64] 
 

 “The choice of the coefficient K is a matter of convenience 
and amounts to the choice of a unit of measure” 

 
Because of the central roles of the conjugate pairs (k, T) and 

ˆ( T)s, in thermodynamic discussed after (75) the choice of the 
measure K = k in (77) is of fundamental significance. Since 
thermodynamic temperature is identified as a length scale by 
(76), choosing the measure K = k insures that 
T 4kNT =S = H  relates to the total energy for 
communication of N symbols in harmony with the perceptions 
of Shannon described in the above quotation. In summary, the 
introduction of Boltzmann constant k in (77) is necessary 
because it allows the entropy of information to be related to 
energy through de Broglie wavelength of particles being used 
to transmit the information. 
 Recently, it was suggested by Ben-Naim [74] that to 
achieve exact correspondence between Boltzmann’s entropy in 
thermodynamics in (40) and Shannon’s entropy in information 
theory in (32) the dimension of thermodynamics absolute 
temperature be changed 
 

“One should redefine a new absolute temperature; denote it 
tentatively as T  to replace kT. The new temperature T  
would have the units of energy and there would be no need 
for Boltzmann constant.  The equation for entropy will be 
simply S = lnW, 21 and entropy would be rendered 
dimensionless”; “This will automatically expunge the 
Boltzmann constant kB from the vocabulary of physics” 

  
 According to the definitions in equations (5)-(8) of 
Section 3 Planck h and Boltzmann k constants are associated 
with the stochastically stationary aspects of Casimir [75] 
vacuum fluctuations with the dimensions 
 

2 1/2h hβ β β βε = 〈ν 〉 = ν     [J-s].[Hz] = [J]               (89a) 
 

2 1/2k kβ β β βε = 〈λ 〉 = λ   [J/m].[m]= [J]       (89b) 
 
Therefore, neither Planck constant h nor what he defined as 
Boltzmann constant k could be expunged from the vocabulary 
of physics. Also, according to (6b) Kelvin absolute 
temperature is identified as a length scale associated with 
mean wavelength of thermal oscillations.   
 

2 1/2k kTβ βε = 〈λ 〉 =           (80) 

The identification of dimension of absolute thermodynamic 
temperature as [meter] rather than [degree K] is a step towards 
clarification of the exact physical nature of this intensive 
property.   
 Because temperature is a measured quantity ultimately it 
is the theory that must determine the significance of such a 
variable and its dimension according to Planck [76]. 
 

“Every measurement first acquires its meaning for 
physical science through the significance which a theory 
gives it” 
 

Therefore, following Planck’s suggestion, it is reasonable to 
change the dimension of absolute thermodynamic temperature 
T from [degree K] to [meter]. The exact correspondence 
between H and Imax could be achieved through the definition 
of dimensionless thermodynamic information entropy H  in 
(74).  
 Arguments have also been made that the very name 
entropy first coined by its discoverer Clausius should be 
changed [77] 
 

 “It is also time to change not only the units of entropy to 
make it dimensionless, but the term “entropy” altogether. 
Entropy, as is now recognized, does not mean 
“transformation, or “change” or “turn”.  It does mean 
information.  Why not replace the term that means 
“nothing” as Cooper noted, and does not even convey the 
meaning it was meant to convey when selected by Clausius?  
Why not replace it with a simple, familiar, meaningful, and 
precisely defined term “information?” 
 

 It is emphasized however that contrary to the above 
quotation the name entropy has been chosen most 
appropriately by Clausius to represent precisely what it should 
namely “transformation”.  According to the result in (65) for 
ideal gas, entropy relates to the number of Planck [45] or 
Heisenberg-Kramers oscillators [43]. Therefore, the second 
law of thermodynamics suggests that in all natural processes 
there is a tendency to transform energy and hence motion from 
ordered motions of a few large-scale oscillators to random 
motions of many small-scale oscillators thus increasing the 
entropy of the system. In other words entropy according to its 
macroscopic definition by Clausius is directly related to heat  
 

revd d / TS Q=             (81) 
 
Therefore, all types of energy dissipation induced by plastic 
deformation, friction, viscosity,… will lead to transformation 
of ordered (correlated) motions into disordered (uncorrelated) 
random motions that is heat thus leading to increased entropy 
by (81). It seems that if we follow the changes of dimensions 
and notations suggested by Ben–Naim [74, 77] the state of our 
scientific terminology may become void and hence approach 
what he calls “Tohu Vavohu” [74] meaning total chaos.  

VII. IMPACT ON THIRD LAW OF THERMODYNAMICS  
According to Nernst-Planck statement of the third law of 
thermodynamics, entropy must approach zero as absolute 
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thermodynamic temperature approaches zero [72]. Another 
statement of the third law is [78] 
 
 “It is impossible to reach absolute zero using a finite number of 
processes” 
 
or the absolute zero temperature cannot be reached with a 
finite number of steps. Examination of Fig. 1 clearly shows 
that the very definitions of space and time that is applicable 
across the hierarchies of embedded statistical fields require 
careful investigations. Recently, it was suggested [42] that the 
description of the hierarchy of statistical fields shown in Fig. 1 
could be expressed in terms of a logarithmic coordinates 
schematically shown in Fig. 4. 
 

      

∞β + 1 1β + 1 0β + 1 − 1β  +1

0β 1β ∞β  − ∞β  − 1β  

− ∞β  +1

δβ+1 = π
2 β

δβ = π
2 β−1

 
 
 
Fig. 4 Hierarchy of normalized coordinates associated with 
embedded statistical fields [42]. 
 
Because according to (76) thermodynamic temperature is 
identified as a length scale from the invariant normalized 
coordinate system shown in Fig.4 one arrives at a hierarchy of 
absolute zero temperatures [42] 
 
 . . .  

 

    β β 1 β 2T 0 T 1 T
− −

= ⇔ = ⇔ = ∞  

     β-1 β 2 β 3T 0 T 1 T
− −

= ⇔ = ⇔ = ∞    

              β-2 β 3 β 4T 0 T 1 T
− −

= ⇔ = ⇔ = ∞  

                                     . . .    (82) 
 
Furthermore, entropy of an ideal gas is a measure of the 
number of oscillators by (65). Therefore, from Nernst-Planck 
statement of the third law and (82) one arrives at the hierarchy 
of “absolute” zero temperature and corresponding “absolute” 
zero entropy as schematically shown in Fig. 5. The hierarchy 
shown in Fig. 5 is associated with the hierarchy of vacua at 
equilibrium conditions and the associated entropy and 
enthalpy leading to vanishing of the invariant Gibbs free 
energy 
 

v v v vT 0G = H S =β β β β β−  (83) 
 

From (75) and (76) the product T S = Hβ β β  and ˆˆT s = hβ β β  
represent the system and atomic energy.  Therefore as 
temperature T approaches zero the atomic energy kTˆ =

β β
ε , 

the atomic internal energy 3kTˆ =u
β β

, and the atomic enthalpy 

ˆ 4kT=hβ β of particles will all approach zero. However, such 
approach will occur through infinite steps corresponding to 
hierarchies of embedded statistical fields (Fig. 1) associated 
with ever smaller scales in accordance with (82) and as 
schematically shown in Figs. 4 and 5. 
 

            

S β

Tβ0β TVβ

S β

Gβ

Gβ−1

Tβ−1
TVβ−1

0β−1

0β−2
Tβ−2

TVβ−2

S β−1

S β−2

 
 
Fig. 5 Hierarchy of absolute “zeros” Tβ = 0β and “vacuum” Tvβ 
temperatures and associated entropies approached at equilibrium 
corresponding to minimum Gibbs free energy Gβ or maximum 
entropy Sβ. 
 
According to Fig. 5, the vacuum-vacuum of scale β is 
identified as Casimir [75] vacuum of scale β−1 as described 
in Section 10 of [42]. 

VIII. CONCLUDING REMARKS  
A scale-invariant model of statistical mechanics was applied to 
describe the nature of the connection between Boltzmann 
thermodynamic entropy and Shannon information entropy.  
Also, the application of the model to statistical fields 
associated with social structures was described. In addition, 
the connections between Shannon information entropy and 
thermodynamic entropy of ideal gas mixtures were examined.  
A modified definition of thermodynamic entropy of ideal 
monatomic gas was introduced relating entropy to the number 
of oscillators in harmony with photon gas in Planck 
equilibrium radiation. Finally, the impact of the model on 
Nernst-Planck statement of the third law of thermodynamics 
was briefly discussed. 
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